skip to main content


Search for: All records

Creators/Authors contains: "Kajin, Maja"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The placenta is a complex organ that shows high morphological diversity. Among fish, the first vertebrates that have evolved a placenta, the family Poeciliidae exhibits very diverse modes of maternal provisioning even among congeneric species. Here, we investigated the embryonic growth curve across seven recently-described species of the highly diverse genus Phalloceros (Eigenmann, 1907). We also investigated possible intraspecific differences and whether other female characteristics affected embryo mass. We found that embryo mass decreased until around stage 20 and then increased, resulting in a 1.5 to 3-fold mass gain from fertilization to birth. Embryo mass changed non-linearly with stage of development and was affected by species identity (or locality) and female somatic dry mass. This initial loss then gain of embryonic mass during development is unique among other Poeciliidae species and was conserved across populations and species, even though size at birth can vary. Other species instead either lose mass if they lack placentas or gain mass exponentially if they have placentas. The Phalloceros mode of maternal provisioning could thus represent a different form from that seen in other species of Poeciliidae. 
    more » « less
  2. Abstract

    Stage‐based demographic methods, such as matrix population models (MPMs), are powerful tools used to address a broad range of fundamental questions in ecology, evolutionary biology and conservation science. Accordingly, MPMs now exist for over 3000 species worldwide. These data are being digitised as an ongoing process and periodically released into two large open‐access online repositories: the COMPADRE Plant Matrix Database and the COMADRE Animal Matrix Database. During the last decade, data archiving and curation of COMPADRE and COMADRE, and subsequent comparative research, have revealed pronounced variation in how MPMs are parameterized and reported.

    Here, we summarise current issues related to the parameterisation and reporting of MPMs that arise most frequently and outline how they affect MPM construction, analysis, and interpretation. To quantify variation in how MPMs are reported, we present results from a survey identifying key aspects of MPMs that are frequently unreported in manuscripts. We then screen COMPADRE and COMADRE to quantify how often key pieces of information are omitted from manuscripts using MPMs.

    Over 80% of surveyed researchers (n = 60) state a clear benefit to adopting more standardised methodologies for reporting MPMs. Furthermore, over 85% of the 300 MPMs assessed from COMPADRE and COMADRE omitted one or more elements that are key to their accurate interpretation. Based on these insights, we identify fundamental issues that can arise from MPM construction and communication and provide suggestions to improve clarity, reproducibility and future research utilising MPMs and their required metadata. To fortify reproducibility and empower researchers to take full advantage of their demographic data, we introduce a standardised protocol to present MPMs in publications. This standard is linked towww.compadre‐db.org, so that authors wishing to archive their MPMs can do so prior to submission of publications, following examples from other open‐access repositories such as DRYAD, Figshare and Zenodo.

    Combining and standardising MPMs parameterized from populations around the globe and across the tree of life opens up powerful research opportunities in evolutionary biology, ecology and conservation research. However, this potential can only be fully realised by adopting standardised methods to ensure reproducibility.

     
    more » « less